BWARE
Post-Wildfire Natural Hazards
Dashboard

Acknowledging The Many Sources of  
Post-fire Natural Hazards Data

To create the Post-Wildfire Natural Hazards Dashboard, members of the BWARE team carefully reviewed thousands of records of post-wildfire natural hazards, with sources that included scientific publications, technical reports, other hazard inventories, news reports, and more.

We carefully extracted all of the information provided about each hazard, verified the details to the best of our ability, attempted to correct any errors we may have discovered, augmented and standardized the disparate recordkeeping across the many international data sources, and finally, organized and categorized the data so that it could be presented as single global record. While we have invested substantial effort to create this database, we are nevertheless not the original source of most of the identified hazard events. Credit for identifying most of the hazards goes to our many colleagues across the science community (both past and present), as well as professional practitioners, news reporters, and many others.

In our Dashboard, we include details about the original identifying source for every hazard within its attributes, which you can find by clicking on an individual hazard point in the map. We will also continue to update and maintain this webpage to cite the many sources of original data that has made this effort possible.

Finally, if you know of any post-fire natural hazard publications or events that you cannot find in our database, then please submit this information through our Report a Hazard page and you may be added to the list!

Data Sources & Literature References:


North America

Canada

BGC Engineering Inc. (2023). Lytton Creek Fire (K71086): Detailed post-wildfire natural hazard risk assessment [Report]. Prepared for BC Ministry of Forests, 8 August 2023.

Brideau, M.-A., Hancock, C.-A., Brayshaw, D., Lipovsky, P., Cronmiller, D., Geertsema, M., Tannant, D., Friele, P., Wong-Teichroeb, H. & Wells, G. (2025). Preliminary Canadian Landslide Database (Version 11.0) [Dataset]. Zenodo. https://doi.org/10.5281/ZENODO.15291248

CBC News. (2025, April 2). 90‑metre landslide shuts road north of Lake Okanagan Resort, fire chief says. CBC. https://www.cbc.ca/news/canada/british-columbia/landslide-westside-road-lake-okanagan-resort-1.7500064

CBC News. (2025, April 13). Missing driver found dead in lake after landslide near Kelowna, B.C.: SAR. CBC. https://www.cbc.ca/news/canada/british-columbia/west-kelowna-central-okanagan-landslide-1.7509341

Cherniwchan, P. (2024). Nahatlatch Flight Overview [Report]. BC Ministry of Forests, 13 August 2024.

Clarke, H. C. (2025). Post-wildfire permafrost landslides and cascading hazards, Dempster Highway, Yukon [Masters, Simon Fraser University]. https://summit.sfu.ca/item/39380

Coates, J. (2008). The impact of forest fire on permafrost slopes Klondike area, Yukon Territory [Masters, University of Ottawa]. http://dx.doi.org/10.20381/ruor-18782

Crookshanks, S. (2019). Morley Creek Post-Fire Debris Flood August 2019 [Report]. British Columbia Ministry of Forests.

Crookshanks, S. (2023). Talbot Creek debris slide and debris flood [Report]. British Columbia Ministry of Forests.

Forest Practices Board (2005). Post-fire Site Rehabilitation: Final Report (FPB/SIR/12).

Forest Practices Board (2006). Post-Wildfire Hazard Assessment and Risk Management (FPB/SR/24).

Hancock, C.-A., & Wlodarczyk, K. (2025). The role of wildfires and forest harvesting on geohazards and channel instability during the November 2021 atmospheric river in southwestern British Columbia, Canada. Earth Surface Processes and Landforms, 50(1), e6065. https://doi.org/10.1002/esp.6065

Huscroft, C., Lipovsky, P. S. & Bond, J. D. (2004). Permafrost and landslide activity: Case studies from southwestern Yukon Territory. In: Yukon Exploration and Geology 2003, Emond, D.S. and Lewis, L.L. (eds.), Yukon Geological Survey, p. 107-119. https://data.geology.gov.yk.ca/Reference/42859

Jordan, P. & Covert, S. A. (2009). Debris Flows and Floods Following the 2003 Wildfires in Southern British Columbia. Environmental & Engineering Geoscience, 15(4), 217–234. https://doi.org/10.2113/gseegeosci.15.4.217

Jordan, P. (2015). Post-wildfire debris flows in southern British Columbia, Canada. International Journal of Wildland Fire, 25(3), 322–336. https://doi.org/10.1071/WF14070

Lewkowicz, A. G., & Harris, C. (2005). Morphology and geotechnique of active-layer detachment failures in discontinuous and continuous permafrost, northern Canada. Geomorphology, 69(1), 275–297. https://doi.org/10.1016/j.geomorph.2005.01.011

Lipovsky, P. S., Coates, J., Lewkowicz, A. G. & Trochim, E. (2006). Active-layer detachments following the summer 2004 forest fires near Dawson City, Yukon. In: Yukon Exploration and Geology 2005, Emond, D.S., Bradshaw, G.D., Lewis, L.L., and Weston, L.H. (eds.), Yukon Geological Survey, p. 175-194. https://data.geology.gov.yk.ca/Reference/42259

Lyle, R. R., Brideau, M., Lipovsky, P., & Hutchnson, D. J. (2014). Landslides on ice-rich slopes–a geohazard in a changing climate. In 4th Canadian Conference on Geohazards (Vol. 10).

Michaels, K. (2025). Landslide closes Westside Road north of Wilson’s Landing. Castanet. 2 April 2025. https://www.castanet.net/news/West-Kelowna/542069/Landslide-closes-Westside-Road-north-of-Wilson-s-Landing

Michaels, K. (2025). Post‑wildfire landslides should be expected. Castanet. 8 April 2025. https://www.castanet.net/news/West-Kelowna/543117/Post-wildfire-landslides-should-be-expected

SNT Geotechnical Ltd. & Sitkum Consulting Ltd. (2022). Post-Wildfire Natural Hazards Risk Analysis: Bill Nye Fire (N11629) [Report], Report No. 21.510.01.04.03, Prepared for BC Ministry of Forests, Lands, and Natural Resource Operations and Rural Development, 2 March 2022.

SNT Geotechnical Ltd. (2023). Unnamed Creek Little Slocan South Road Landslide [Report], Prepared for the Regional District of Central Kootenay Emergency Management Program, 7 May 2023.

Tannant, D. D. & Skermer, N. (2013). Mud and debris flows and associated earth dam failures in the Okanagan region of British Columbia. Canadian Geotechnical Journal, 50(8), 820–833. https://doi.org/10.1139/cgj-2012-0206

VanDine, D. F., Rodman, R. F., Jordan, P., & Dupas, J. (2005). Kuskonook Creek, an example of a debris flow analysis. Landslides, 2(4), 257–265. https://doi.org/10.1007/s10346-005-0017-9

Westrek Geotechnical Services Ltd. (2017). Post-Wildfire, Landslide Inventory Elaho Valley, Near Squamish, BC [Report]. Prepared for BC Ministry of Forests.

Young, J. M., Alvarez, A., van der Sluijs, J., Kokelj, S. V., Rudy, A., McPhee, A., Stoker, B. J., Margold, M., & Froese, D. (2022). Recent Intensification (2004–2020) of Permafrost Mass-Wasting in the Central Mackenzie Valley Foothills Is a Legacy of Past Forest Fire Disturbances. Geophysical Research Letters, 49(24), e2022GL100559. https://doi.org/10.1029/2022GL100559

Return to Top

Mexico

Rivera-Garcia, J. E., Bartolo Cruz-Romero, Morales-Hernández, J. C., & Martínez, O. F. (2025). Wildfires as Triggering Factor for Landslides in San Gabriel, Jalisco, Mexico. International Journal of Sustainable Development and Planning, 1421–1429. https://doi.org/10.18280/ijsdp.200406

Return to Top

United States

Benda, L., & Dunne, T. (1997). Stochastic forcing of sediment supply to channel networks from landsliding and debris flow. Water Resources Research, 33(12), 2849–2863. https://doi.org/10.1029/97WR02388

Bernard, D. (2007). Estimation of inundation areas of post-wildfire debris flows [M.Sc., Colorado School of Mines]. https://hdl.handle.net/11124/15959

Bernard, D., Trousil, E., & Santi, P. (2021). Estimation of inundation areas of post-wildfire debris flows in Southern California USA. Engineering Geology, 285, 105991. https://doi.org/10.1016/j.enggeo.2021.105991

Booker, F.A. (1998). Landscape management response to wildfires in California: MS Thesis, University of California, Berkeley, California, 436 p.

Brogan, D. J., Nelson, P. A., & MacDonald, L. H. (2017). Reconstructing extreme post-wildfire floods: A comparison of convective and mesoscale events. Earth Surface Processes and Landforms, 42(15), 2505–2522. https://doi.org/10.1002/esp.4194

Burns, W. J., Calhoun, N. C., Zimmerman, M., Roering, J. J., Sanders, M. A., Leshchinsky, B. A., Rengers, F. K., & Mathews, N. W. (2025). Multitemporal LIDAR Analysis of Pre- and Post-Eagle Creek Fire Debris Flows, Western Columbia River Gorge, Hood River and Multnomah Counties, Oregon (Dogami Special Paper Series) [Special Paper 55]. Oregon Department of Geology and Mineral Industries.

Busby, D. (2022). Hydrogeomorphic Response of Steep Streams following Severe Wildfire in the Western Cascades, Oregon [M.Sc., University of Montana]. https://scholarworks.umt.edu/etd/11995

Busby, D. M., & Wilcox, A. C. (2024). Hydrogeomorphic response of steep streams following severe wildfire in the Western cascades, Oregon. Earth Surface Processes and Landforms, 49(14), 4570–4586. https://doi.org/10.1002/esp.5982

California Geological Survey, Butte Fire, Personal Communication

Cannon, S. H., Boldt, E. M., Kean, J. W., Laber, J., & Staley, D. M. (2010). Relations Between Rainfall and Postfire Debris-Flow and Flood Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California (Open-File Report). US Geological Survey. https://doi.org/10.3133/ofr20101040

Cannon, S. H., Kirkham, R. M., & Parise, M. (2001). Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado. Geomorphology, 39(3-4), 171–188. https://doi.org/10.1016/S0169-555X(00)00108-2

Cannon, S.H. (1999). Debris-flow response of watersheds recently burned by wildfire: PhD. Thesis, University of Colorado at Boulder, 176 p.

Cavagnaro, D. B., McCoy, S. W., Thomas, M. A., Kostelnik, J., & Lindsay, D. N. (2025). Improved Prediction of Postfire Debris Flows Through Rainfall Anomaly Maps. Geophysical Research Letters, 52(16), e2025GL114791. https://doi.org/10.1029/2025GL114791

Chrysovergis, P., Chrysovergis, S., & Chrysovergis, T. (2021). An Evaluation of Post-Wildfire Erosional and Flooding Damage in Southern California. Geo-Extreme 2021. https://doi.org/10.1061/9780784483688.012

Cleveland, G.B. (1973). Fire + Rain = Mudflows. California Geology, 26(6), 127-135.

Collins, L. (2008). Mud & debris flow rescue concepts. Technical Rescue, 53. http://t-rescue.com/index.htm

Daurio, M. (2025). Cascading hazards, cascading consequences: Linking social-ecological systems in post-fire recovery. Human Organization. Advance online publication. https://doi.org/10.1080/00187259.2025.2499680

DeGraff, J. V., & Gallegos, A. J. (2012). The Challenge of Improving Identification of Rockfall Hazard after Wildfires. Environmental & Engineering Geoscience, 18(4), 389–397. https://doi.org/10.2113/gseegeosci.18.4.389

DeGraff, J. V., Cannon, S. H., & Gartner, J. E. (2015). The Timing of Susceptibility to Post-Fire Debris Flows in the Western United States. Environmental & Engineering Geoscience, 21(4), 277–292. https://doi.org/10.2113/gseegeosci.21.4.277

DeGraff, J. V., Shelmedine, B., Gallegos, A., & Annis, D. (2015). Uncertainty Associated with Evaluating Rockfall Hazard to Roads in Burned Areas. Environmental & Engineering Geoscience, 21(1), 21–33. https://doi.org/10.2113/gseegeosci.21.1.21

DeGraff, J. V. (2018). A rationale for effective post-fire debris flow mitigation within forested terrain. Geoenvironmental Disasters, 5(1), 7. https://doi.org/10.1186/s40677-018-0099-z

DeGraff, J. V., Staley, D. M., Stock, G. M., Takenaka, K., Gallegos, A. L., & Neptune, C. K. (2022). Rainfall Triggering of Post-Fire Debris Flows over a 28-Year Period near El Portal, California, USA. Environmental & Engineering Geoscience, 28(1), 133–145. https://doi.org/10.2113/EEG-D-21-00031

DeGraff, J. V., Wagner, D. L., Gallegos, A. J., DeRose, M., Shannon, C., & Ellsworth, T. (2011). The remarkable occurrence of large rainfall-induced debris flows at two different locations on July 12, 2008, Southern Sierra Nevada, CA, USA. Landslides, 8(3), 343–353. https://doi.org/10.1007/s10346-010-0245-5

DeLong, S. B., Youberg, A. M., DeLong, W. M., & Murphy, B. P. (2018). Post-wildfire landscape change and erosional processes from repeat terrestrial lidar in a steep headwater catchment, Chiricahua Mountains, Arizona, USA. Geomorphology, 300, 13–30. https://doi.org/10.1016/j.geomorph.2017.09.028

Doehring, D. O. (1968). The effect of fire on geomorphic processes in the San Gabriel Mountains, California. Rocky Mountain Geology, 7(1), 43–65.

Dunham, J. B., Rosenberger, A. E., Luce, C. H., & Rieman, B. E. (2007). Influences of Wildfire and Channel Reorganization on Spatial and Temporal Variation in Stream Temperature and the Distribution of Fish and Amphibians. Ecosystems, 10(2), 335–346. https://doi.org/10.1007/s10021-007-9029-8

Eaton, E. C. (1936). Flood and Erosion Control Problems and their Solution. Transactions of the American Society of Civil Engineers, 101(1), 1302–1330. https://doi.org/10.1061/TACEAT.0004726

Ellett, N. G., Pierce, J. L., & Glenn, N. F. (2019). Partitioned by process: Measuring post-fire debris-flow and rill erosion with Structure from Motion photogrammetry. Earth Surface Processes and Landforms, 44(15), 3128–3146. https://doi.org/10.1002/esp.4728

Felling, G., Myers, A., & McCoy, S.W. (2019). Post-fire debris-flow hazard analysis for Interstate 80, Truckee River Canyon, near the California-Nevada state line, USA. Association of Environmental and Engineering Geologists Special Publication 28. http://dx.doi.org/10.25676/11124/173157

Florsheim, J. L., Chin, A., Kinoshita, A. M., & Nourbakhshbeidokhti, S. (2017). Effect of storms during drought on post-wildfire recovery of channel sediment dynamics and habitat in the southern California chaparral, USA. Earth Surface Processes and Landforms, 42(10), 1482–1492. https://doi.org/10.1002/esp.4117

Friedman, E.Q. & Santi, P.M. (2019). Relationship between rainfall intensity and debris-flow initiation in a southern Colorado burned area. Association of Environmental and Engineering Geologists Special Publication 28. http://dx.doi.org/10.25676/11124/173181

Friedman, J. M., Tillery, A. C., Alfieri, S., Skaggs, E., Shafroth, P. B., & Allen, C. D. (2024). Redistribution of debris-flow sediment following severe wildfire and floods in the Jemez Mountains, New Mexico, USA. Earth Surface Processes and Landforms, 49(13), 4263–4274. https://doi.org/10.1002/esp.5964

Gabet, E. J. & Bookter, A. (2008). A morphometric analysis of gullies scoured by post-fire progressively bulked debris flows in southwest Montana, USA. Geomorphology, 96(3), 298–309. https://doi.org/10.1016/j.geomorph.2007.03.016

Giraud, R.E. & McDonald, G.N. (2007), June. The 2000 -2004 fire-related debris flows in northern Utah. In Conference Presentations, 1st North American Landslide Conference, Vail, CO, Association of Environmental and Engineering Geologists Special Publication 23, 1522-1531.

Gorr, A. N., McGuire, L. A., Beers, R., & Hoch, O. J. (2023). Triggering conditions, runout, and downstream impacts of debris flows following the 2021 Flag Fire, Arizona, USA. Natural Hazards, 117(3), 2473–2504. https://doi.org/10.1007/s11069-023-05952-9

Gorr, A. N., McGuire, L. A., Youberg, A. M., Beers, R., & Liu, T. (2024). Inundation and flow properties of a runoff-generated debris flow following successive high-severity wildfires in northern Arizona, USA. Earth Surface Processes and Landforms, 49(2), 622–641. https://doi.org/10.1002/esp.5724

Graber, A. P., Thomas, M. A., & Kean, J. W. (2023). How Long Do Runoff-Generated Debris-Flow Hazards Persist After Wildfire? Geophysical Research Letters, 50(19), e2023GL105101. https://doi.org/10.1029/2023GL105101

Gray, D.H. (1981). Forest vegetation removal and slope stability in the Idaho Batholith. US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 271.

Guilinger, J. J., Gray, A. B., Barth, N. C., & Fong, B. T. (2020). The Evolution of Sediment Sources Over a Sequence of Postfire Sediment-Laden Flows Revealed Through Repeat High-Resolution Change Detection. Journal of Geophysical Research: Earth Surface, 125(10), e2020JF005527. https://doi.org/10.1029/2020JF005527

Gurrola, L. D., & Rogers, J. D. (2022). Fire, Flood, and Landslide  Dam History: Community of Montecito and Vicinity, Southern Santa Barbara County, California (p. 168). The Project for Resilient Communities.

Hahn, A. J., Christensen, N. D., White, D. C., Wohl, E., & Morrison, R. R. (2025). Trajectories of river-floodplain morphology and hydraulics following compounding wildfire-flood disturbances. Earth Surface Processes and Landforms, 50(5), e70057. https://doi.org/10.1002/esp.70057

Harris, H.E., Baxter, C.V., & Davis, J.M. (2018). Wildfire and debris flows affect prey subsidies with implications for riparian and riverine predators. Aquatic Sciences, 80, 1-14. https://doi.org/10.1007/s00027-018-0589-9

Hedden, C., Propst, D. L., Gido, K. B., Hedden, S. C., & Whitney, J. E. (2022). Differential Responses of Native Fishes in Two Headwater Tributaries of the Gila River Following Severe Wildfires. Western North American Naturalist, 82(1), 201–207. https://doi.org/10.3398/064.082.0122

Helvey, J.D. (1980). Effects of a North Central Washington wildfire on runoff and sediment production. Journal of the American Water Resources Association, 16(4), 627-634. https://doi.org/10.1111/j.1752-1688.1980.tb02441.x

Helvey, J.D., Tiedemann, A.R., & Fowler, W.B. (1976). Some climatic and hydrologic effects of wildfire in Washington State on the Entiat Experimental Forest. In Proceedings Tall Timbers Fire Ecology Conference. 15(7), 201-222.

Howell, P. J. (2006). Effects of Wildfire and Subsequent Hydrologic Events on Fish Distribution and Abundance in Tributaries of North Fork John Day River. North American Journal of Fisheries Management, 26(4), 983–994. https://doi.org/10.1577/M05-114.1

Jackson, M., & Roering, J. J. (2009). Post-fire geomorphic response in steep, forested landscapes: Oregon Coast Range, USA. Quaternary Science Reviews, 28(11), 1131–1146. https://doi.org/10.1016/j.quascirev.2008.05.003

Jones, B. M., Grosse, G., Arp, C. D., Miller, E., Liu, L., Hayes, D. J., & Larsen, C. F. (2015). Recent Arctic tundra fire initiates widespread thermokarst development. Scientific Reports, 5, 15865. https://doi.org/10.1038/srep15865

Kean, J. W., Staley, D. M., Lancaster, J. T., Rengers, F. K., Swanson, B. J., Coe, J. A., Hernandez, J. L., Sigman, A. J., Allstadt, K. E., & Lindsay, D. N. (2019). Inundation, flow dynamics, and damage in the 9 January 2018 Montecito debris-flow event, California, USA: Opportunities and challenges for post-wildfire risk assessment. Geosphere, 15(4), 1140–1163. https://doi.org/10.1130/GES02048.1

Kerby, J. L., & Kats, L. B. (1998). Modified Interactions Between Salamander Life Stages Caused by Wildfire-Induced Sedimentation. Ecology, 79(2), 740–745. https://doi.org/10.1890/0012-9658(1998)079[0740:MIBSLS]2.0.CO;2

Langstroth, C. (2024). Constraining Decadal-Scale Erosion and Delivery of Post-Wildfire Debris Flow Deposits [Masters, Utah State University]. Graduate Theses and Dissertations, Dec. 2024. https://digitalcommons.usu.edu/etd2023/349

Larsen, I.J. (2003). From the rim to the river: The geomorphology of debris flows in the Green River canyons of Dinosaur National Monument, Colorado and Utah. Utah State University, 194 p.

Li, C., Handwerger, A. L., Wang, J., Yu, W., Li, X., Finnegan, N. J., Xie, Y., Buscarnera, G., & Horton, D. E. (2022). Augmentation of WRF-Hydro to simulate overland-flow- and streamflow-generated debris flow susceptibility in burn scars. Natural Hazards and Earth System Sciences, 22(7), 2317–2345. https://doi.org/10.5194/nhess-22-2317-2022

Loganbill, A. W. (2013). Post-fire Response of Little Creek Watershed: Evaluation of Change in Sediment Production and Suspended Sediment Transport [M.Sc., California Polytechnic State University]. https://www.proquest.com/docview/2838329455/abstract/41D9054CB4974EFAPQ/1

Martin, J.A. (2000). Debris-flow activity in Canyon of Lodore, Colorado: Implications for debris-fan formation and evolution. Utah State University. 139 p.

McGuire, L. A., & Youberg, A. M. (2019). Impacts of successive wildfire on soil hydraulic properties: Implications for debris flow hazards and system resilience. Earth Surface Processes and Landforms, 44(11), 2236–2250. https://doi.org/10.1002/esp.4632

McGuire, L. A., & Youberg, A. M. (2020). What drives spatial variability in rainfall intensity-duration thresholds for post-wildfire debris flows? Insights from the 2018 Buzzard Fire, NM, USA. Landslides, 17(10), 2385–2399. https://doi.org/10.1007/s10346-020-01470-y

McGuire, L. A., Rengers, F. K., Kean, J. W., Staley, D. M., & Mirus, B. B. (2018). Incorporating spatially heterogeneous infiltration capacity into hydrologic models with applications for simulating post-wildfire debris flow initiation. Hydrological Processes, 32(9), 1173–1187. https://doi.org/10.1002/hyp.11458

McGuire, L. A., Youberg, A. M., Rengers, F. K., Abramson, N. S., Ganesh, I., Gorr, A. N., Hoch, O., Johnson, J. C., Lamom, P., Prescott, A. B., Zanetell, J., & Fenerty, B. (2021). Extreme Precipitation Across Adjacent Burned and Unburned Watersheds Reveals Impacts of Low Severity Wildfire on Debris-Flow Processes. Journal of Geophysical Research: Earth Surface, 126(4), e2020JF005997. https://doi.org/10.1029/2020JF005997

McGuire, L., Rengers, F., Youberg, A, Gorr, A., & Hoch, O. (2022). Characteristics of debris-flow triggering rainstorms following wildfire in western New Mexico, Geological Society of America Abstracts with Programs. 54(5), https://doi/10.1130/abs/2022AM-378676

McGuire, L., Youberg, A., Gorr, A., & Beers, R. (2023). Triggering rainfall intensities for post-wildfire debris flows in the Sonoran Desertscrub plant community. E3S Web of Conferences, 415, 04010. https://doi.org/10.1051/e3sconf/202341504010

McGuire, L.A., Ebel, B.A., Rengers, F.K., Vieira, D.C.S, & Nyman, P. (2024), Postfire Debris-Flow Database (Literature Derived): U.S. Geological Survey data release, https://doi.org/10.5066/P13STASQ

Megahan, W. F., & Molitor, D. C. (1975, August 11–13). Erosional effects of wildfire and logging in Idaho. Watershed Management Symposium, ASCE Irrigation and Drainage Division, Logan, Utah

Meyer, G. A., & Wells, S. G. (1997). Fire-related sedimentation events on alluvial fans, Yellowstone National Park, U.S.A. Journal of Sedimentary Research, 67(5), 776–791. https://doi.org/10.1306/D426863A-2B26-11D7-8648000102C1865D

Meyer, G. A., Pierce, J. L., Wood, S. H., & Jull, A. J. T. (2001). Fire, storms, and erosional events in the Idaho batholith. Hydrological Processes, 15(15), 3025–3038. https://doi.org/10.1002/hyp.389

Michel, A., Kean, J. W., Smith, J. B., Allstadt, K. E., & Coe, J. A. (2019). Taking the pulse of debris flows: Extracting debris-flow dynamics from good vibrations in southern California and central Colorado.

Mikulovsky, R. P., de la Fuente, J. A., Bell, A., Stevens, M., & Levitan, F. (2012). Activation of Deep-Seated Landslides in NW California After Wildfires in 2006 and 2008. AGU, San Francisco. https://www.researchgate.net/publication/273142831_Activation_of_Deep-Seated_Landslides_in_NW_California_After_Wildfires_in_2006_and_2008

Miller, A. W., & Nelson, E. J. (2010). Hydrologic Evaluation Of Flood Flows From A Burned Watershed. WIT Press, 133, 12. https://doi.org/10.2495/FRIAR100221

Murphy, B. P., Czuba, J. A., & Belmont, P. (2019). Post-wildfire sediment cascades: A modeling framework linking debris flow generation and network-scale sediment routing. Earth Surface Processes and Landforms, 44(11), 2126–2140. https://doi.org/10.1002/esp.4635

Neptune, C. K., Degraff, J. V., Pluhar, C. J., Lancaster, J. T., & Staley, D. M. (2021). Rainfall Thresholds for Post-Fire Debris-Flow Generation, Western Sierra Nevada, CA. Environmental & Engineering Geoscience, 27(4), 439–453. https://doi.org/10.2113/EEG-D-21-00039

Orem, C. A., & Pelletier, J. D. (2015). Quantifying the time scale of elevated geomorphic response following wildfires using multi-temporal LiDAR data: An example from the Las Conchas fire, Jemez Mountains, New Mexico. Geomorphology, 232, 224–238. https://doi.org/10.1016/j.geomorph.2015.01.006

Palucis, M. C., Ulizio, T. P., & Lamb, M. P. (2021). Debris flow initiation from ravel-filled channel bed failure following wildfire in a bedrock landscape with limited sediment supply. GSA Bulletin, 133(9–10), 2079–2096. https://doi.org/10.1130/B35822.1

Parrett, C. (1987). Fire-related debris flows in the Beaver Creek drainage, Lewis and Clark County, Montana. U.S. Geological Survey Water-Supply Paper, 2330, 57-67.

Parrett, C., Cannon, S.H., & Pierce, K.L. (2003). Wildfire-related Floods and Debris Flows in Montana in 2001: U.S. Geological Survey Water-Resources Investigations Report 03-4319, 22 p.

Porter, R., Joyal, T., Beers, R., Loverich, J., LaPlante, A., Spruell, J., Youberg, A., Schenk, E., Robichaud, P. R., & Springer, A. E. (2021). Seismic Monitoring of Post-wildfire Debris Flows Following the 2019 Museum Fire, Arizona. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.649938

Rathburn, S. L., Shahverdian, S. M., & Ryan, S. E. (2018). Post-disturbance sediment recovery: Implications for watershed resilience. Geomorphology, 305, 61–75. https://doi.org/10.1016/j.geomorph.2017.08.039

Raymond, C. A., McGuire, L. A., Youberg, A. M., Staley, D. M., & Kean, J. W. (2020). Thresholds for post-wildfire debris flows: Insights from the Pinal Fire, Arizona, USA. Earth Surface Processes and Landforms, 45(6), 1349–1360. https://doi.org/10.1002/esp.4805

Rengers, F. K., McGuire, L. A., Oakley, N. S., Kean, J. W., Staley, D. M., & Tang, H. (2020). Landslides after wildfire: Initiation, magnitude, and mobility. Landslides, 17(11), 2631–2641. https://doi.org/10.1007/s10346-020-01506-3

Rengers, F.K., Bower, S.J., Knapp, A., Kean, J.W., & Staley, D.M. (2023). Debris Flow, Precipitation, and Volume Measurements in the Grizzly Creek Burn Perimeter June 2021-September 2022, Glenwood Canyon, Colorado (ver. 1.1, October 2023): U.S. Geological Survey data release, https://doi.org/10.5066/P9Z7RROL.

Rice, R. M., & Foggin III, G. T. (1971). Effect High Intensity Storms on Soil Slippage on Mountainous Watersheds in Southern California. Water Resources Research, 7(6), 1485–1496. https://doi.org/10.1029/WR007i006p01485

Ridgway, P., Lane, B., Canham, H., Murphy, B. P., Belmont, P., & Rengers, F. K. (2024). Wildfire, extreme precipitation and debris flows, oh my! Channel response to compounding disturbances in a mountain stream in the Upper Colorado Basin, USA. Earth Surface Processes and Landforms, 49(12), 3855–3872. https://doi.org/10.1002/esp.5942

Riedel, J. L., & Sarrantonio, S. M. (2021). Debris flow magnitude, frequency, and precipitation threshold in the eastern North Cascades, Washington, USA. Natural Hazards, 106(3), 2519–2544. https://doi.org/10.1007/s11069-021-04553-8

Riley, K. L., Bendick, R., Hyde, K. D., & Gabet, E. J. (2013). Frequency–magnitude distribution of debris flows compiled from global data, and comparison with post-fire debris flows in the western U.S. Geomorphology, 191, 118–128. https://doi.org/10.1016/j.geomorph.2013.03.008

Ryan, S. E., Shobe, C. M., Rathburn, S. L., & Dixon, M. K. (2024). Suspended-sediment response to wildfire and a major post-fire flood on the Colorado Front Range. River Research and Applications, 40(7), 1256–1272. https://doi.org/10.1002/rra.4286

Schwartz, J. Y., Oakley, N. S., & Alessio, P. (2021). Assessment of a Post-Fire Debris Flow Impacting El Capitan Watershed, Santa Barbara County, California, U.S.A. Environmental & Engineering Geoscience, 27(4), 423–437. https://doi.org/10.2113/EEG-D-21-00008

Scott, K. M. (1971). Origin and sedimentology of 1969 debris flows near Glendora, California. U.S. Geological Survey Professional Paper, 750, 242-247.

Selander, B. D., Calhoun, N., Burns, W. J., Rengers, F. K., Kean, J. W., Patton, A. I., & Roering, J. J. (2024). Inventory of debris flows in burned (2020-2022) and unburned (1995-2020) areas in the western Cascade Range of Oregon: U.S. Geological Survey data release, https://doi.org/10.5066/P13TPP8J; Selander, B. D., Calhoun, N., Burns, W. J., Kean, J. W., & Rengers, F. K. (2025). Assessment of western Oregon debris-flow hazards in burned and unburned environments. Earth Surface Processes and Landforms, 50(4), e70045. https://doi.org/10.1002/esp.70045

Shaub, S. (2001). Landslides and wildfire: an example from the Boise National Forest. [Masters, Boise State University]. Graduate Theses and Dissertations, May 2001. https://scholarworks.boisestate.edu/td/792/

Slosson, J. E., Havens, G. W., Shuirman, G., & Slosson, T. L. (1991). Harrison Canyon Debris flows of 1980. Environmental Geology and Water Sciences, 18(1), 27–38. https://doi.org/10.1007/BF01704575

Smith, D. P., Schnieders, J., Marshall, L., Melchor, K., Wolfe, S., Campbell, D., French, A., Randolph, J., Whitaker, M., Klein, J., Steinmetz, C., & Kwan, R. (2021). Influence of a Post-dam Sediment Pulse and Post-fire Debris Flows on Steelhead Spawning Gravel in the Carmel River, California. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.802825

Staley, D. M., Negri, J. A., Kean, J. W., Laber, J. L., Tillery, A. C., & Youberg, A. M. (2016). Updated logistic regression equations for the calculation of post-fire debris-flow likelihood in the western United States. In Open-File Report (Nos. 2016–1106). U.S. Geological Survey. https://doi.org/10.3133/ofr20161106

Staley, D. M., Negri, J. A., Kean, J. W., Laber, J. L., Tillery, A. C., & Youberg, A. M. (2017). Prediction of spatially explicit rainfall intensity–duration thresholds for post-fire debris-flow generation in the western United States. Geomorphology, 278, 149–162. https://doi.org/10.1016/j.geomorph.2016.10.019

Swanson, B. J., Lukashov, S. G., Schwartz, J. Y., Lindsay, D. N., & Lancaster, J. T. (2022). Assessment of Logistic Regression Model Performance and Physical Controls on January 9, 2018, Debris Flows, Thomas Fire, California. Environmental & Engineering Geoscience, 28(1), 113–131. https://doi.org/10.21663/EEG-D-21-00026

Tang, H., McGuire, L. A., Rengers, F. K., Kean, J. W., Staley, D. M., & Smith, J. B. (2019). Evolution of Debris-Flow Initiation Mechanisms and Sediment Sources During a Sequence of Postwildfire Rainstorms. Journal of Geophysical Research: Earth Surface, 124(6), 1572–1595. https://doi.org/10.1029/2018JF004837

Thomas, M. A., Lindsay, D. N., Cavagnaro, D. B., Kean, J. W., McCoy, S. W., & Graber, A. P. (2023). The Rainfall Intensity-Duration Control of Debris Flows After Wildfire. Geophysical Research Letters, 50(10), e2023GL103645. https://doi.org/10.1029/2023GL103645

Thomas, M. A., Lindsay, D. N., Kean, J. W., Graber, A. P., Rossi, R. K., Kostelnik, J., Rengers, F. K., Schwartz, J. Y., Swanson, B. J., Oakley, N. S., Richardson, P. W., Morelan, A. E., Ritchie, A. C., Warrick, J. A., Rotche, L. L., Penserini, B. D., & Slaughter, S. L. (2025). Landsliding follows signatures of wildfire history and vegetation regrowth in a steep coastal shrubland. Geosphere. https://doi.org/10.1130/GES02856.1

Tillery, A. C., & Rengers, F. K. (2020). Controls on debris-flow initiation on burned and unburned hillslopes during an exceptional rainstorm in southern New Mexico, USA. Earth Surface Processes and Landforms, 45(4), 1051–1066. https://doi.org/10.1002/esp.4761

Tolman, D. (2025, September 30). Personal communication. Save Our Canyons.

Tranmer, A. W., Benjankar, R., & Tonina, D. (2020). Post-wildfire riparian forest recovery processes along a regulated river corridor. Forest Ecology and Management, 478, 118513. https://doi.org/10.1016/j.foreco.2020.118513

Tuckett, Q. M., & Koetsier, P. (2016). Mid- and long-term effects of wildfire and debris flows on stream ecosystem metabolism. Freshwater Science, 35(2), 445–456. https://doi.org/10.1086/686151

Van de Water, R. (2000). Burned area emergency rehabilitation lesson plan. U.S. Department of Agriculture Forest Service, Klamath National Forest.];[Collins, L. (2008). Mud & debris flow rescue concepts. Technical Rescue, 53. http://t-rescue.com/index.htm

Wall, S. A., Roering, J. J., & Rengers, F. K. (2020). Runoff-initiated post-fire debris flow Western Cascades, Oregon. Landslides, 17(7), 1649–1661. https://doi.org/10.1007/s10346-020-01376-9

Wall, S., Murphy, B. P., Belmont, P., & Yocom, L. (2023). Predicting post-fire debris flow grain sizes and depositional volumes in the Intermountain West, United States. Earth Surface Processes and Landforms, 48(1), 179–197. https://doi.org/10.1002/esp.5480

Washington Geological Survey. (2025). Post-fire debris flow hazard dashboard. Washington State Department of Natural Resources. Retrieved July 8, 2025, from https://wadnr.maps.arcgis.com/apps/dashboards/e7feaba37d1649fa828e38159dd567c2

Wells, W. G., II. (1987). The effects of fire on the generation of debris flows in southern California. In J. E. Costa & G. F. Wieczorek (Eds.), Debris Flows/Avalanches: Process, Recognition, and Mitigation (Vol. 7, pp. 105–114). Geological Society of America. https://doi.org/10.1130/REG7-p105

Wicherski, W., Dethier, D. P., & Ouimet, W. B. (2017). Erosion and channel changes due to extreme flooding in the Fourmile Creek catchment, Colorado. Geomorphology, 294, 87–98. https://doi.org/10.1016/j.geomorph.2017.03.030

Wohl, E., & Pearthree, P. (1991, October). Debris flows as geomorphic agents in the Huachuca Mountains of southeastern Arizona. Geomorphology, 4(3-4), 273-292. Retrieved from https://doi.org/10.1016/0169-555X(91)90010-8

Youberg A. (2015). Geodatabase of Post-Wildfire Study Basins: Assessing the predictive strengths of post-wildfire debris-flow models in Arizona, and defining rainfall intensity-duration thresholds for initiation of post-fire debris flow. Arizona Geological Survey Digital Information, DI-44, 10 p., geodatabase, and Excel workbook. https://library.azgs.arizona.edu/item/AGDI-1552428145135-106

Return to Top

Europe

Austria

Melzner, S., Peduto, D., Hübl, J., Fiorucci, F., & Phillips, C. (2025). Wildfire-induced geohydrological risk in the Alps. Landslides. https://doi.org/10.1007/s10346-025-02581-0

Sass, O., Haas, F., Schimmer, C., Heel, M., Bremer, M., Stöger, F., & Wetzel, K.F. (2012). Impact of forest fires on geomorphic processes in the tyrolean limestone alps. Geografiska Annaler: Series A, Physical Geography, 94(1), 117–133. https://doi.org/10.1111/j.1468-0459.2012.00452.x

Return to Top

Germany

Sass, O., Haas, F., Schimmer, C., Heel, M., Bremer, M., Stöger, F., & Wetzel, K.F. (2012). Impact of forest fires on geomorphic processes in the tyrolean limestone alps. Geografiska Annaler: Series A, Physical Geography, 94(1), 117–133. https://doi.org/10.1111/j.1468-0459.2012.00452.x

Return to Top

Greece

Diakakis, M., Mavroulis, S., Vassilakis, E., & Chalvatzi, V. (2023). Exploring the Application of a Debris Flow Likelihood Regression Model in Mediterranean Post-Fire Environments, Using Field Observations-Based Validation. Land, 12(3), Article 3. https://doi.org/10.3390/land12030555

Diakakis, M., Nikolopoulos, E. I., Mavroulis, S., Vassilakis, E., & Korakaki, E. (2017). Observational evidence on the effects of mega-fires on the frequency of hydrogeomorphic hazards. The case of the Peloponnese fires of 2007 in Greece. Science of The Total Environment, 592, 262–276. https://doi.org/10.1016/j.scitotenv.2017.03.070

Emmanouloudis, D., & Kaikis, M. (2006). The cause and mechanism of the fatal flood in Eleftheres, Kavala, Northern Greece. Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flows, 1, 195–204. https://doi.org/10.2495/DEB060191

Lainas, S., Depountis, N., & Sabatakakis, N. (2021). Preliminary Forecasting of Rainfall-Induced Shallows in the Wildfire Burned Areas of Western Greece. Land, 10(8), Article 8. https://doi.org/10.3390/land10080877

Rozos, D., Lykoudi, E., Tsangaratos, P., Markantonis, K., Georgiadis, P., Rondoyanni, T., Leivaditi, A., & Kyrousis, I. (2010). Evaluation of soil erosion and susceptibility to landslide manifestation as a consequence of wildfire events affecting the Zacharo municipality, Peloponnesus, Greece. Bulletin of the Geological Society of Greece, 43(3), 1406–1417. https://doi.org/10.12681/bgsg.11316

Return to Top

France

Martin, C., & Lavabre, J. (1997). An estimation of the contribution of slope runoff to the Rimbaud stream floods (massif des Maures, Var, France) after the August 1990 forest fire. Hydrological Sciences Journal, 42(6), 893–907. https://doi.org/10.1080/02626669709492086

Return to Top

Italy

Abbate, A., Longoni, L., Ivanov, V. I., & Papini, M. (2019). Wildfire Impacts on Slope Stability Triggering in Mountain Areas. Geosciences, 9(10), Article 10. https://doi.org/10.3390/geosciences9100416

Carabella, C., Miccadei, E., Paglia, G., & Sciarra, N. (2019). Post-Wildfire Landslide Hazard Assessment: The Case of The 2017 Montagna Del Morrone Fire (Central Apennines, Italy). Geosciences, 9(4), Article 4. https://doi.org/10.3390/geosciences9040175

Di Napoli, M., Marsiglia, P., Di Martire, D., Ramondini, M., Ullo, S. L., & Calcaterra, D. (2020). Landslide Susceptibility Assessment of Wildfire Burnt Areas through Earth-Observation Techniques and a Machine Learning-Based Approach. Remote Sensing, 12(15), 2505. https://doi.org/10.3390/rs12152505

Esposito, G., & Gariano, S. L. (2025). Overview of the first fatal post-fire debris flow event recorded in Italy. Landslides, 22(6), 2131–2139. https://doi.org/10.1007/s10346-025-02516-9

Esposito, G., Gariano, S. L., Masi, R., Alfano, S., & Giannatiempo, G. (2023). Rainfall conditions leading to runoff-initiated post-fire debris flows in Campania, Southern Italy. Geomorphology, 423, 108557. https://doi.org/10.1016/j.geomorph.2022.108557

Esposito, G., Matano, F., Molisso, F., Ruoppolo, G., Di Benedetto, A., & Sacchi, M. (2017). Post-fire erosion response in a watershed mantled by volcaniclastic deposits, Sarno Mountains, Southern Italy. CATENA, 152, 227–241. https://doi.org/10.1016/j.catena.2017.01.009

Esposito, G., Parodi, A., Lagasio, M., Masi, R., Nanni, G., Russo, F., Alfano, S., & Giannatiempo, G. (2019). Characterizing Consecutive Flooding Events after the 2017 Mt. Salto Wildfires (Southern Italy): Hazard and Emergency Management Implications. Water, 11(12), 2663. https://doi.org/10.3390/w11122663

Guasti, G. U., Caprinali, A., & Majorca, L. (2013). Rockfall and Debris Flow Hazards After Summer Wildfires in Cerreto Sannita, Benevento, Italy. In C. Margottini, P. Canuti, & K. Sassa (Eds.), Landslide Science and Practice: Volume 4: Global Environmental Change (pp. 217–225). Springer. https://doi.org/10.1007/978-3-642-31337-0_28

Guerriero, L., Francioni, M., Calcaterra, D., Di Martire, D., Palumbo, S., Zito, C., & Sciarra, N. (2024). Reduced complexity debris flow/flood hazard assessment at the southwestern slope of Mt. Omo, L’Aquila municipality, central Italy. Landslides, 21(1), 183–195. https://doi.org/10.1007/s10346-023-02143-2

Guerriero, L., Tufano, R., Capozzi, V., Budillon, G., Di Muro, C., Esposito, L., Forte, G., Vitale, E., & Calcaterra, D. (2025). A postwildfire debris flood in Gragnano, southern Italy, on September 11, 2024. Landslides, 22(6), 1923–1936. https://doi.org/10.1007/s10346-025-02509-8

La Porta, G., Leonardi, A., La Ferlita, S., & Pirulli, M. (2025). Post-wildfire debris flow in the Northwestern Italian Alps: Description and numerical analysis of the June 2018 Bussoleno event. Landslides. https://doi.org/10.1007/s10346-025-02605-9

Lombardo, L., Bachofer, F., Cama, M., Märker, M., & Rotigliano, E. (2016). Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-eastern Sicily, Italy). Earth Surface Processes and Landforms, 41(12), 1776–1789. https://doi.org/10.1002/esp.3998

Notti, D., Guenzi, D., Lasaponara, R., & Giordan, D. (2022). Merging Historical Archives with Remote Sensing Data: A Methodology to Improve Rockfall Mitigation Strategy for Small Communities. Land, 11(11), 1951. https://doi.org/10.3390/land11111951

Pala, C., Melis, M. T., Pioli, L., Sarro, R., Loddo, S., Cinus, S., & Brunetti, M. T. (2025). Sediment generation through thermal spalling during the 2021 montiferru planargia wildfire and its contribution to postfire debris flows. Scientific Reports, 15(1), 30918. https://doi.org/10.1038/s41598-025-15527-2

Peduto, D., Iervolino, L., Esposito, G., Foresta, V., Matano, F., & Masi, R. (2022). Clues of wildfire-induced geotechnical changes in volcanic soils affected by post-fire slope instabilities. Bulletin of Engineering Geology and the Environment, 81(10), 454. https://doi.org/10.1007/s10064-022-02947-x

Tiranti, D., Cremonini, R., & Sanmartino, D. (2021). Wildfires Effect on Debris Flow Occurrence in Italian Western Alps: Preliminary Considerations to Refine Debris Flow Early Warnings System Criteria. Geosciences, 11(10), Article 10. https://doi.org/10.3390/geosciences11100422

Vacha, D., Mandrone, G., Garbarino, M., & Morresi, D. (2021). First Consideration About Post 2017 Wildfire Erosion Response and Debris Flow in Susa Valley (NW Italy). In B. Tiwari, K. Sassa, P. T. Bobrowsky, & K. Takara (Eds.), Understanding and Reducing Landslide Disaster Risk: Volume 4 Testing, Modeling and Risk Assessment (pp. 443–450). Springer International Publishing. https://doi.org/10.1007/978-3-030-60706-7_47

Return to Top

Portugal

Araújo Santos, L. M., Correia, A. J. P. M., & Coelho, P. A. L. F. (2020). Post-wildfire slope stability effects and mitigation: A case study from hilly terrains with unmanaged forest. SN Applied Sciences, 2(11), 1883. https://doi.org/10.1007/s42452-020-03660-7

Lourenco, L. (1994). A Enxurrada do Ribeiro de Albagueira. III Congresso Florestal Nacional, Figueira da Foz, 15 a 17 de Dezembro, 1-9.

Lourenço, L., Nunes, A. N., Bento-Gonçalves, A., & Vieira, A. (2012). Soil Erosion After Wildfires in Portugal: What Happens When Heavy Rainfall Events Occur? In Research on Soil Erosion. https://doi.org/10.5772/50447

Melo, R., & Zêzere, J. L. (2017). Modeling debris flow initiation and run-out in recently burned areas using data-driven methods. Natural Hazards, 88(3), 1373–1407. https://doi.org/10.1007/s11069-017-2921-4

Return to Top

Slovenia

Melzner, S., Peduto, D., Hübl, J., Fiorucci, F., & Phillips, C. (2025). Wildfire-induced geohydrological risk in the Alps. Landslides. https://doi.org/10.1007/s10346-025-02581-0

Return to Top

Spain

García-Ruiz, J. M., Arnáez, J., Gómez-Villar, A., Ortigosa, L., & Lana-Renault, N. (2013). Fire-related debris flows in the Iberian Range, Spain. Geomorphology, 196, 221–230. https://doi.org/10.1016/j.geomorph.2012.03.032

Gómez-Gutiérrez, Á., Sánchez-Fernández, M., Schnabel, S., & Lavado-Contador, J. F. (2025). High-resolution assessment of a hillslope affected by a debris flow 3-years after a wildfire. CATENA, 254, 108999. https://doi.org/10.1016/j.catena.2025.108999

Neris, J., Santamarta, J. C., Doerr, S. H., Prieto, F., Agulló-Pérez, J., & García-Villegas, P. (2016). Post-fire soil hydrology, water erosion and restoration strategies in Andosols: A review of evidence from the Canary Islands (Spain). iForest - Biogeosciences and Forestry, 9(4), 583. https://doi.org/10.3832/ifor1605-008

Sarro, R., Pérez-Rey, I., Tomás, R., Alejano, L. R., Hernández-Gutiérrez, L. E., & Mateos, R. M. (2021). Effects of Wildfire on Rockfall Occurrence: A Review through Actual Cases in Spain. Applied Sciences, 11(6), 2545. https://doi.org/10.3390/app11062545

Viegas, D. X., Grilo, F., Caballero, D., Viegas, M. T., & Ribeiro, L. M. (2010). Analysis of the August 2009 Fire in La Palma, Canary Islands [Conference Abstract]. SPEIC10: Towards Sustainable Combustion, Tenerife, Spain. 16 - 18 June 2010.

Return to Top

Switzerland

Conedera, M., Peter, L., Marxer, P., Forster, F., Rickenmann, D., & Re, L. (2003). Consequences of forest fires on the hydrogeological response of mountain catchments: A case study of the Riale Buffaga, Ticino, Switzerland. Earth Surface Processes and Landforms, 28(2), 117–129. https://doi.org/10.1002/esp.425

Vergani, C., Werlen, M., Conedera, M., Cohen, D., & Schwarz, M. (2017). Investigation of root reinforcement decay after a forest fire in a Scots pine (Pinus sylvestris) protection forest. Forest Ecology and Management, 400, 339–352. https://doi.org/10.1016/j.foreco.2017.06.005

Return to Top

United Kingdom

Johnson, R. M., Warburton, J., & Mills, A. J. (2008). Hillslope–channel sediment transfer in a slope failure event: Wet Swine Gill, Lake District, northern England. Earth Surface Processes and Landforms, 33(3), 394–413. https://doi.org/10.1002/esp.1563

Return to Top

Asia

China

Cao, X., Hu, X., Han, M., Jin, T., Yang, X., Yang, Y., He, K., Wang, Y., Huang, J., Xi, C., & Liu, B. (2022). Characteristics and predictive models of hillslope erosion in burned areas in Xichang, China, on March 30, 2020. CATENA, 217, 106509. https://doi.org/10.1016/j.catena.2022.106509

Gong, X., Zhou, Y., Hu, X., He, K., & Wang, J. (2025). Spatiotemporal distribution characteristics of post-fire debris flows during the first rainy season following Yajiang Fire, Sichuan, China. Landslides. https://doi.org/10.1007/s10346-025-02563-2

He, K., Hu, X., Wu, Z., Zhong, Y., Zhou, Y., Gong, X., & Luo, G. (2024). Preliminary analysis of the wildfire on March 15, 2024, and the following post-fire debris flows in Yajiang County, Sichuan, China. Landslides, 21(12), 3179–3189. https://doi.org/10.1007/s10346-024-02364-z

He, K., Hu, X., Zhou, Y., Luo, G., Zhou, R., & Gong, X. (2025). Initiation mechanisms for multiple post-fire debris flow events: Insights from the 2021 Yaoyao Fire in Western Sichuan, China. Landslides, 1–22. https://doi.org/10.1007/s10346-025-02553-4

Jin, T., Hu, X., Liu, B., Xi, C., He, K., Cao, X., Luo, G., Han, M., Ma, G., Yang, Y., & Wang, Y. (2022). Susceptibility Prediction of Post-Fire Debris Flows in Xichang, China, Using a Logistic Regression Model from a Spatiotemporal Perspective. Remote Sensing, 14(6), Article 6. https://doi.org/10.3390/rs14061306

Ouyang, C., Xiang, W., An, H., Wang, F., Yang, W., & Fan, J. (2023). Mechanistic Analysis and Numerical Simulation of the 2021 Post-Fire Debris Flow in Xiangjiao Catchment, China. Journal of Geophysical Research: Earth Surface, 128(1), e2022JF006846. https://doi.org/10.1029/2022JF006846

Wang Y., Shen H., Xie W., Lu K., & Hu G. (2024). Analysis of the rainfall threshold for post-fire debris flow initiation: A case study of the debris flow at Ren’eyong gully in Xiangcheng County, Sichuan Province. The Chinese Journal of Geological Hazard and Control, 35(1), 108–115. https://doi.org/10.16031/j.cnki.issn.1003-8035.202208007

Wang, Y., Hu, X., Wu, L., Ma, G., Yang, Y., & Jing, T. (2022). Evolutionary history of post-fire debris flows in Ren’e Yong valley in Sichuan Province of China. Landslides, 19(6), 1479–1490. https://doi.org/10.1007/s10346-022-01867-x

Yang, H., Liu, J., Sun, H., You, Y., Zhao, W., & Yang, D. (2024). Evolution characteristics of post-fire debris flow in Xiangjiao gully, Muli County. CATENA, 246, 108353. https://doi.org/10.1016/j.catena.2024.108353

Yang, H., Liu, J., Sun, H., Zhao, W., Wang, D., & Zhang, W. (2022). Characteristics, causes, and risk reduction of a catastrophic debris flow hazard on 05 July 2021 at the Xiangjiao Gully of Muli County, China. Bulletin of Engineering Geology and the Environment, 81(12), 513. https://doi.org/10.1007/s10064-022-03014-1

Yang, Y., Hu, X., Han, M., He, K., Liu, B., Jin, T., Cao, X., Wang, Y., & Huang, J. (2022). Post-fire temporal trends in soil properties and revegetation: Insights from different wildfire severities in the Hengduan Mountains, Southwestern China. CATENA, 213, 106160. https://doi.org/10.1016/j.catena.2022.106160

Yin, W., Jin, T., Hu, X., Cao, X., Yang, X., & Huang, J. (2021). Study on the development characteristics of post-fire debris flow and its early warning risk aversion in Zhongba Village, Xide County. The Chinese Journal of Geological Hazard and Control,  32(3), 61-69. https://doi.org/10.16031/j.cnki.issn.1003-8035.2021.03-08

Zhou, R., He, K., Hu, X., Cao, X., Xi, C., Zhou, Y., Gong, X., & Deng, L. (2025). Multi-temporal landslide inventory mapping after wildfire and implications for post-fire debris flow activity. Engineering Geology, 348, 107948. https://doi.org/10.1016/j.enggeo.2025.107948

Zhou, Y., Hu, X., Gong, X., He, K., Jiang, M., Yang, J., & Peng, H. (2025). Variability of post-fire debris flow initiation mechanisms across different lithological zones in the Hengduan Mountains, China. Landslides. https://doi.org/10.1007/s10346-025-02616-6

Return to Top

Japan

Touge, Y., Hasegawa, M., Minegishi, M., Kawagoe, S., & Kazama, S. (2023). Multitemporal UAV surveys of geomorphological changes caused by postfire heavy rain in Kamaishi city, northeast Japan. CATENA, 220, 106702. https://doi.org/10.1016/j.catena.2022.106702

Return to Top

Russia

Semenova, O., Lebedeva, L., Volkova, N., Korenev, I., Forkel, M., Eberle, J., & Urban, M. (2015). Detecting immediate wildfire impact on runoff in a poorly-gauged mountainous permafrost basin. Hydrological Sciences Journal, 60(7–8), 1225–1241. https://doi.org/10.1080/02626667.2014.959960

Return to Top

South Korea

Lee, K., Lee, C., & Eu, S. (2022). Temporal Trend in Landslide Occurrences in Post-fire Areas over the Past Two Decades. Journal of the Korean Society of Hazard Mitigation, 22(4), 47–55. https://doi.org/10.9798/KOSHAM.2022.22.4.47

Lee, K.-H., Uchida, T., & Seo, J.-P. (2022). Monitoring of Post-Fire Bedload Transport Using Hydrophone in a Small Burnt Catchment, South Korea. Forests, 13(11), Article 11. https://doi.org/10.3390/f13111774

Shin, S. S., Park, S. D., & Lee, K. S. (2013). Sediment and hydrological response to vegetation recovery following wildfire on hillslopes and the hollow of a small watershed. Journal of Hydrology, 499, 154–166. https://doi.org/10.1016/j.jhydrol.2013.06.048

Return to Top

Taiwan

Chompuchan, C., & Lin, C.-Y. (2017). Assessment of forest recovery at Wu-Ling fire scars in Taiwan using multi-temporal Landsat imagery. Ecological Indicators, 79, 196–206. https://doi.org/10.1016/j.ecolind.2017.04.038

Return to Top

Oceania

Australia

Colls, S., & Miner, A. S. (2021). Bushfires, landslides and geotechnical challenges in the Otway Ranges, Victoria. NZGS Symposium 2021. Good Grounds for the Future, Dunedin, New Zealand.

Keeble, T., Lyell, C. S., Lane, P., Nyman, P., Noske, P. J., & Sheridan, G. (2024). A landscape scale model to predict post-fire debris flow impact zones. Geomorphology, 455, 109175. https://doi.org/10.1016/j.geomorph.2024.109175

McGuire, L.A., Ebel, B.A., Rengers, F.K., Vieira, D.C.S, & Nyman, P. (2024), Postfire Debris-Flow Database (Literature Derived): U.S. Geological Survey data release, https://doi.org/10.5066/P13STASQ.

Nyman, P., Rutherfurd, I. D., Lane, P. N. J., & Sheridan, G. J. (2019). Debris flows in southeast Australia linked to drought, wildfire, and the El Niño–Southern Oscillation. Geology, 47(5), 491–494. https://doi.org/10.1130/G45939.1

Nyman, P., Sheridan, G. J., Smith, H. G., & Lane, P. N. J. (2011). Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia. Geomorphology, 125(3), 383–401. https://doi.org/10.1016/j.geomorph.2010.10.016

Tulau, M. J., McInnes-Clarke, S. K., Yang, X., McAlpine, R. A., Karunaratne, S. B., Zhu, Q., & Morand, D. T. (2019). The Warrumbungle Post-Fire Recovery Project—Raising the profile of soils. Soil Use and Management, 35(1), 63–74. https://doi.org/10.1111/sum.12467

Tulau, M. J., Nyman, P., Young, M., Morand, D., Mcinnes-Clarke, S. K., & Noske, P. (2019). Mass movements of Warrumbungle National Park, New South Wales, Australia. Proceedings of the Linnean Society of New South Wales, 141, S115-S130. https://search.informit.org/doi/10.3316/informit.887345061608925

Worthy, M. (2003). A history of fire and sediment transport in the Cotter River catchment, southeastern Australia. [Doctoral dissertation, Australian National University]. https://doi.org/10.25911/5d514d0c48a09

Return to Top

South America

Chile

Martini, L., Faes, L., Picco, L., Iroumé, A., Lingua, E., Garbarino, M., & Cavalli, M. (2020). Assessing the effect of fire severity on sediment connectivity in central Chile. Science of The Total Environment, 728, 139006. https://doi.org/10.1016/j.scitotenv.2020.139006

Picco, L., Scalari, C., Martini, L., Pellegrini, G., Faes, L., Sanhueza, D., Mazzorana, B., & Iroumé, A. (2020). How to deal with large wood recruitment after wildfires? Analysis, aspects and considerations for improving post-fire management. In River Flow 2020. CRC Press.

Ramírez, P., Carrasco, F., & Astudillo, F. (2023). Evaluación de peligro de remoción en masa en seis sectores de la comuna de Galvarino y cinco sectores de la comuna de Lumaco afectados por incendios forestales, región de La Araucanía (p. 22) [Technical Report]. National Geology and Mining Service. https://repositorio.sernageomin.cl/handle/0104/25941

Return to Top

Africa

Uganda

Jacobs, L., Maes, J., Mertens, K., Sekajugo, J., Thiery, W., van Lipzig, N., Poesen, J., Kervyn, M., & Dewitte, O. (2016). Reconstruction of a flash flood event through a multi-hazard approach: Focus on the Rwenzori Mountains, Uganda. Natural Hazards, 84(2), 851–876. https://doi.org/10.1007/s11069-016-2458-y

Return to Top